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Abstract. The renormalization problem is solved without using the mass renormalization
concepi, by introducing a new physical interaction picture in which the unobservable
interaction of the free ¢lectron with the vacuum radiation field is eliminated. This is
achieved vy applying a self-consistent projection-operator method, developed recently by
the present author. A finite expression for the non-relativistic Lamb shift, whose explicit
evaluation shows a fairly good agreement with the experiment, is derived.

As Au and Feinberg [1] have pointed out, ambiguities exist in the mass renormaliza-
tion procedure in the case of non-relativistic treatment of the Lamb shift. The aim
of the present paper is to show that a new interaction picture, in which finite results
without renormalization follow automatically, can be found.

The renormalization concept, introduced by Kramers [2] and firstly applied by
Bethe [3] for the calculation of the non-relativistic Lamb shift, consists of replacing
the experimentally unobservable ‘bare’ mass of a free electron by its ‘renormalized’,
experimental mass (being the sum of the electromagnetic mass and bar, mechanical
mass). The idea that only physically observable quantities should play a role in the
theory is a very old one and stems from Heisenberg.

However, in our opinion a more natural, completely self-consistent and relatively
simple solution of the problem can be achieved without the mass renormalization
concept, by introducing a new ‘physical’ interaction picture, in which the physically
unobservable interaction of the free electron with the vacuum radiation field is elimi-
nated. It is self-evident that a self-consistent calculation of the Lamb (radiative-level)
shift can be carried out only by studying the time behaviour of the atomic system
(bound electron) interacting with the radiation field. As will be shown in this paper,
such a treatment can be carried out by applying the self-consistent projection-operator
method (SCPOM) which has been recently developed and applied by the present author
[4-9].

The Hamiltonians for the unperturbed hydrogenic atom and the quantized radia-
tion field read as
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where [ is the wnit operator in the spin Hilbert space, a*(k,\) are the photon
creation and annihilation operators for the mode (k, A) and e, , is the polarization
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vector (A is the polarization index). Further, the interaction Hamiltonian between
the atom and the radiation field is given by

H, = —%A(R) .P- 2‘:’2’:0-3(11) @)

where

F- 2
AR = Y5 [ S (am (kAR at (R, N)e ™ R)  (3)
2 & | e (@ ’

is the vector potential, o is the Pauli spin operator and B = V x A is the magnetic
field.

Since we are interested in the calculation of the radiative energy (Lamb) shift
of the state [nim,m,,v) = |nlm) @ |m,) ® |[v}) with the energy eigenvalue E,
(n,l, m, m, are the principal, angular momentum, magnetic and spin-magnetic quan-
tum numbers, respectively and v denotes the vacuum state of the radiation field), we
choose for our projection operator P

P = |nim,m,,v){nim,m,,v| @

Then, by applying the SCPOM [4-9] to the Schrédinger equation in the interaction
picture

PO~ Laole)  W0) = P©) = Inim, m, ) ©

H(t) = exp[(i/h}(P*/2m + V + HR)t)H expl-(i/R)(P?/2m + V + HR)Y]
(©)
_an exact closed equation of motion for the reduced state vector Pli(¢)}) can be
obtained [4]
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where 7 is the Dyson time—ordering operator, I is the unit operator in the product
Hilbert space H , @ Hy of the atom and radiation field, and we took into account
that PH;P = 0.

A new ‘physical’ interaction picture will be now introduced. This new picture,
in which the dynamics of the free electron interacting with the radiation field is
climinated, will be referred to as the ‘bound-electron interaction picture’. To achieve
this, it is necessary to describe the time evoiution of a free eieciron, being initiaily in
the state

|nlm, m,) = j &p (plalm, m,)|p) ©)
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(which is a superposition of free-clectron eigenstates |p)), under the influence of its
interaction with the vacuum radiation field.

The application of the sSCPOM to the Schrddinger equation (5), which in the case
of the free electron (V' = 0) reduces to

AO) — SHOWD) 1) = [9(0)) = Intm, m, ,v) 10)
H, (1) = expl(i/m)(P*/2m + Hp)t| H exp[-(i/R)(P*/2m + Hp)Y] an

leads to an exact closed equation of motion for P|+(t)) describing the time evolution
of the reduced state vector under the influence of the free-electron-field interaction

“—_”dpl:ibt(t)) = —’—:‘Efdr’,f’fff(t)ﬁ(t,t — ) H,(t — T)PlH(E— 1)) (12)
o]

with U(t,t — 7) defined by (8) in which all Hamiltonians H, are replaced by H,.
This equation in the so-called Markov approximation (which consists of neglecting
memory effects) [4, 5] reduces to

dP (1))

dt = Afree(t70)P|"L(t)) (13)

t
A (t,0)= —%5 dr (nlm,m,,v|H, (YU(1,t - 7)H (t — 7)|nlm,m ,v)
0
(14)

whose solution reads as
t
PID) = exp | [ 47 Anetr, 0| (O s
0

The solution (15) does not contain a time-ordering operator since A (%,0) is an ex-
pectation value, and therefore the commutation relation [Ag..(t,,0), Ay (15,0)] =
0 holds for arbitrary times ¢, and £,.

Now, we can introduce the ‘bound-electron interaction picture’

1
Plu(hpmr = exb |~ [ 47 A 0)PIUCO) (16)
]
In the Markov approximation, equation (7}, in this new picture, takes the form
P Oleer = (—i/m)a A(L,0) PIH(D)a an
AA(ta 0) = ih[Abound(t?O) - Afree(t’ 0)] (18)

t

Apouna(1,0) = —--ﬁlz- dr {nlm,m,,v|H;(1)U(t,t - 1)
D

x Hy(t - r)|nlm, m,,v) (19
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with the solution given by

Pl (t)per = exp[(mi/h) / drAA(r,o)] (o)) 20)
0

In this new picture, a complete elimination of the dynamics of the free electron
interacting with the vacuum radiation field is performed to all orders of interaction
H,. This procedure is unambiguous and self-consistent. It is easy to see that in the
second-order approximation as to the strength of the interaction (Born approxima-
tion), the expression A A(t — oo,0) (where the upper limit of the time integration
is replaced with oo by introducing a damping factor e=*” in the integral (e — 0 after
carrying out the integration)) reduces to a ‘renormalized’ expression for the radiative
energy-level shift

alm

AA®(t - c0,0) = AERMY ~ AERTS (21)

where A EBSund (subscript m, is dropped) is the self-energy of the electron bound
in the atom

A B = iRAL) 4 (t — o0,0)

e By
(21r)2m2c e—0 k

x{nlm, m, |h;exp{(i/R)[E,—(P-K)*/2m-V —cK|r}h;|nlm,m,)
(22)

K=hk hy=h,+h, hy=e, P hQE%-(the,“A) 23)

AEfTe = 1hA£fe)e(t — 00,0)

—ie? ) 7 —er [d3k
_(Zﬂ)zmzc;b—% dre 3
b
x{nlm,m|h;exp[(i/R)(~K*/2m+P-K [m-cK)r|hfnlm,m}.
249)

In obtaining the above equations we inserted the Hamiltonians from (1) and (2), and
used the relations: (v|a~(k,A)at(k’, \)|v) =d(k—k')d, ,, and

e(i/h}Hnta:l:(k,)\)e—(i/h)Hm — ekt +

(25)
R G/W)(P am)t,—ik-R e(i/n)[(?-x)’/am]:
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After catrying out the integration over 7, the expression for the Lamb shift takes the
following form:

AEnlm = AEulm(h )+ AEnlm(hE) (26)
d3k
AEnlm(h’e) - (2—105'”_12— Zf (nlm mslh (Gbound_ Gfree)h lnlm m )
e=1,2 @)

where the Green operators G4 and G, are given by

1
E,—-(P-K)*/2m-V(R)-cK

Gbound =
(28)
-1
K22m-K-P/m+ cK

Gfree =

In this way, without using any renormalization we obtained a finite expression for the
Lamb shift.

In order to get explicitly calculable expressions, an expansion in powets of V(R)
should be carried out

AE 1 n(h,) = AE, 1 (h )+ AE 1, o(h,) + AE,, 3(h,) e=1,2 (29

with

e’hc
AEqim,i{he) = me 2(2,r)2 E/ (nlm, m,|h Gk |nim,m,)
i=1,2,3 (30)
G, = G — Gipee G, = G\VG, Gs = GV GV Gpouna (31)

where the Green operator G, containing the complete self-energy contribution of the
free electron reads as

! . 32)
E,—(P—-K)*/2m - cK

raal
h

4]

Now, in order to demonstrate the finiteness of our results, explicit calculations of
the Lamb shift will be carried out by taking into account retardation effects. This
will be achieved, quite analogously to Lieber [10], but with the significant difference
that retardation effects will be taken into account, by using the O(4) symmetry of
the non-relativistic hydrogen atom [11]. In this way, the introduction of a relativistic
cutoff [3,10], being inconsistent with the simultanecously used dipole approximation
(which requires a much lower cutoff frequency), can be avoided. In the following
we will expand AE, ;,, ;(h,) in powers of P - K and take only contributions up
to second order into account (since higher order contributions are neglegibly small).
The zero-order P - K contributions read as [12]

MBS, (h) = - 22 [aKK(1 - p? (L(p,nzm) -3) ©
AEfLDI)m, 2(hy) = 46;: / KdK(1 - p)*L'(p,nlm) (34)
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where L and L', apart from a different p (which contains retardation)

a?mc?

2n?

Aoy -2—pp)2 = (K2 + 2mcK) P =v-2mE, E, =-

are analogously defined as in [10] (« is the fine-structure constant). For 1s, 2s and
2p states L and L’ take the form [12]

— 52 259w o2
L{p,100) = : 4,9 L(p,200) = {1te 2;(2 e

—Ea2 4
m L'(p,100) = 1 +(1 )ln|1 2|

L{p,21m) = 3 857 %

1)1 1 58 (1 pt)2 & pn-s
L'(”’2°°)=zl§+f’2‘%"%'( Ly }
; 1
L(Pa21m)=rp2
2a_ o2y 3 (1-p%)? (1-p*) _ 2]
x{(1+p)(3 p*) 5 pe 1+ pe In(1-p%)| ¢ .

This latter leads to the following numerical results

AEY) (hy)/h = 12029.7 MHz
AES) (hy)/h = 1841.5 MHz (35)

AER, \(hy)/h = 573.3 MHz

AESD) ,(hy)/h = —3963.5 MHz
AER) ,(hy)/h = —790.234 MHz (36)
AER . J(hy)/h = —521.933 MHz

{where h is the Planck constant)

The third term AE( i1 a(hy), which includes all remaining orders in the potential
V, can similarly be calculated as in [10]

a?mc® [t (1-p)( - p*)Plw; -1+ ]
AEQ(h)/h = -2 [Cap e
oo m — p2m—4

e m p+(m-1)/(m+1)
130.21 MHz (37)

X
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adme? ! 1—p}(1—p¥)3w., -1+
AEQy ()= -G [[ap U= 2MIm 2 e, 2 14

N m —1p2’“ im +2)p® -~ m+2)
XZ (m+2)p+m-—2

m=2
= —35.93 MHz (38)
a’mc? 1 1-p)1 =) [w,—14p
AE%?L,s(hl)/h == 1087rhW/0 dP( X w)2 Lo, !

(52 2+ 12k + DIk = 1)k - 2)/(k 4 1k +2) - o
Hlo + (k= 2)/(k + 2)]

pPF8(k? — 1) (k= 2)
+2(1 - p)zzk[(p+(k 2)(k+2)]}

= —55.51 MHz (39)

k=1

where PV is the Cauchy principal value and w, = /(1 — p)? + 4a?p/n2.

Since G{,m alnlm) = Gg‘_’;wm), no zero-order conttibution in P+ K arises from
the spin-radiation interaction: AEic}ln(hz) = 0. Furthermore, as a consequence of
the angular V g -integration (d3K = K2d Kdv ), the first-order corrections in P- K

vanish, A EY (h.) = 0,e =1, 2, Therefore, the second-order corrections in P. K,

nlm
0 p-K
[G(bo)und( m )Ggi)und

which read as
(2) d3K
B )= 2o [
nlm> 40)

p- K () 2
( m ) Ggo)und - Ggre)e] h‘e

have to be evaluated. A similar calculation as above yields following numerical results

AEGN(hy)/h=22.33 MHz  AES)(h)/h = 2.954 MHz (41)
AEB(h,)/h=1786 MHz  AE2(k,)/h = 22.32 MHz (42)
Ang)m(h,_,)/h ~0 e=1,2 (43)

Finally, collecting the above numerical results [cf (35)—(39) and (41)-(43)] we
obtain for the Lamb shifts

AE o /h =8136.9 MHz
AE,q,/h =1040.62 MHz (44)
AE, . ./h=-4.14 MHz

This leads to the frequency shifts Av(2s — 1s) = 7096.3 MHz and Av(2s —
2p) = 1044.8 MHz, which agrees fairly well with the corresponding experimental
results [13): 71289 MHz and 1057.85 MHz.



5422 J Seke

Despite the fact that relativistic Lamb shift calculations (see references quoted in
{13]) lead to a better agreement with experiment, our result shows, for the first time
to our knowledge, that almost the whole Lamb-shift contribution can be calculated
by using a self-consistent non-relativistic treatment in which the retardation effects
are taken into account. By taking into account the retardation, not only can the
introduction of an inconsistent cutoff frequency (usually used in the literature [3, 10])
be avoided but also the spin-radiation-field effect (whose contribution has been

vy | v | nld nnt ha talan intn arcannt in 2 101 l'\nnu“cn nf + naalant
lsllul.bu l.l.l. llj ﬂllu Wulu AL U WDl LY GWAASULLLE L l-” .I.UJ Uor UL I.lllu l.ll.asl.\abl,

of the retardation) can be included in the Lamb shift calculation.

In spite of the apparent significance of the results obtained, the main achieve-
ment of the present paper that by using the SCPOM a new physical ‘bound-electron
interaction picture’, in which the physically unobservable self-energy of the free elec-
tron is eliminated, can be introduced. Thus, a finite analytic expression for the
non-relativistic Lamb shift can be derived without using the mass renormalization
concept. In this way, for the first time to our knowledge, a self-consistent solution of
the renormalization problem is presented.

Acknowledgments

The author would like to thank Professors C K Au and G Feinberg for a useful conver-
sation. This work was supported by the ‘Fonds zur Forderung der wissenschaftlichen
Forschung in Osterreich (Vienna, Austria)’, grant P8696-PHY.

References

[}] Au C K and Feinberg G 1974 Phys. Rev A 9 1794 (Addendum and Erratum 1975 Phys. Rev A 12
1722-33)
[2) Kramers H A 1949 Rapporis du 8¢ Conseil Solvay 1948 (Brussels: Stoops) p 241
[3] Bethe H A 1947 Phys. Rex 72 339
[4] Seke T 1990 J Phys. A: Math. Gen. 23 161
[5] Seke J 1991 I Phys. A: Math. Gen. 24 2121
6] Scke T 1990 I Phye B: At Mol Opr Phys 23 1559
[1 Seke J and Herfort W 1991 Physica Al178 561
[8) Seke J 1992 [ Phys. A: Math. Gen. 25 691
[9] Seke J 1992 FPhys. Rev A 45 542
{10) Lieber M 1968 Phys. Rev 174 2037
[11] Fock V 1935 Z Phys. 98 145
[12] Seke J and Mddritsch W 1992 to be published
[13] Mclntyre D H, Beausoleil F G, Foot C J, Hildum E A, Couillaud B C and Hinsch T W 1989 Phys.
Rev. A 39 4591



